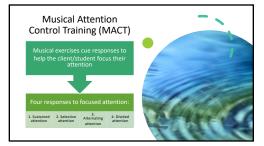
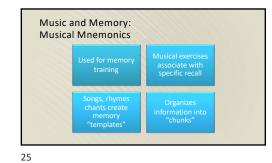


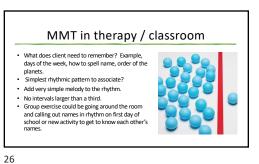
Gait data for Parkinson's (decrease cadence)						
E Visteps taken	#seconds walked	G	CADENCE	# feet walked	velocity	STRIDE LENGTH
w steps taken	wsecorius walkeu	(60 / seconds walked)	(steps X multiplier)	W TEEL Walkey		(Velocity/cadence X 2
		(uo y accontas waikeu)	(steps x matchier)		(reec x matchier)	(velocity/cadence x 2
18	9.98	6.01	108.2	15	90.2	1
13				15	90.0	2
14				15		2.
12	8.5	7.06	84.7	15	105.9	2.
19		5.45	103.6	15	81.8	1.
15	9.37	6.40	96.1	15	96.1	2.
15	8.25	7.27	109.1	15	109.1	2.
13	8.59	6.98	90.8	15	104.8	
	0.55	0.50	50.0	15	104.0	

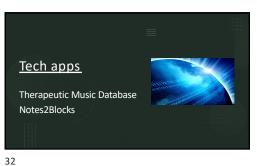
 The use of musical instruments to exercise and also simulate functional movement patterns.
Simply hitting a drum can markedly improve endurance, strength, and coordination when using entrainment beat. Can also be used very easily in a group situation.

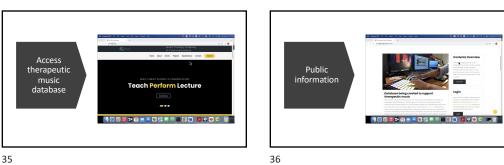


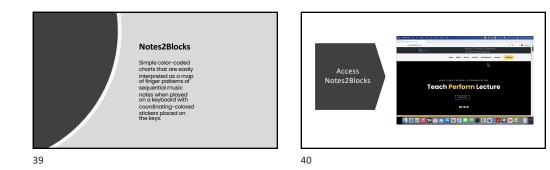
TIMP: Larger muscles

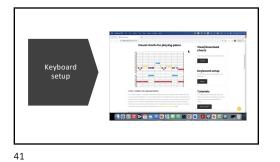


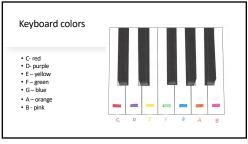


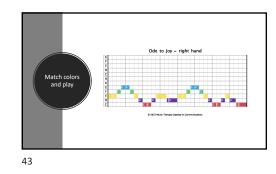

Musical Speech
Stimulation (MUSTIM)Uses music and music materials to help
subst obst opped pectures.Sing a ong that will be familiar with the client,
speech (ong) mirrored back to you.Music is generally the most favored by the client
that they enjoy now or listened to in high
plano or other instrument.











46

- Altenmuller, E. (2006). Music, Motor Control and the Brain. USA: Oxford University Press.
- Levitin, D. (2006). This is Your Brain on Music The Science of a Human Obsession. New York: Dutton, a member of Penguin Group. Sacks, O. (2007). Musicophilia Tales of Music and the Brain. New York, Rotonto:
- Alfred A. Knopf Thaut, M. (2002). A Scientific Model of Music in Therapy and Medicine. (3ee ed.). San Antonio: IMR Press, The University of Texas at San Antonio
- Thaut, M. (2005). Rhythm, Music, and the Brain: Scientific Foundations and Clinical
- Applications. New York and London: Routledge. Thaut, M., Hoemberg, V., eds. (2014) Handbook of Neurologic Music Therapy.
- Oxford, United Kingdom: Oxford University Press.

Websites

American Music Therapy Association: www.musictherapy.org Martha Summa-Chadwick: www.marthasumma.com Music Therapy Gateway in Communications: www.mtgic.org